Archive

「关于统计的资料整理汇总」
2024

LongitudinalDA 论文列表

List of Papers


2023

MS-Lec2.2 统计学基础(统计决策理论、统计推断概述、渐近准则与推断)

Fundamentals of Statistics (Statistical Decision Theory, Statistical Inference, Asymptotic Criteria and Inference)


MS-Lec2.1 统计学基础(总体、样本、模型、统计量、充分性和完备性)

Fundamentals of Statistics (Populations, Samples, Models, Statistics, Sufficiency, and Completeness)


MS-Lec1.3 概率论(渐近理论)

Probability (Asymptotic Theory)


MS-Lec1.2 概率论(分布及其特征、条件期望)

Probability (Distributions and Their Characteristics, Conditional Expectations)


MS-Lec1.1 概率论(概率空间、随机元、积分和微分)

Probability (Probability Spaces, Random Elements, Integration and Differentiation)


2022

RL-Lec12 基于策略的深度强化学习

Policy-Based Deep Reinforcement Learning


Bayes-Lec11 动态线性模型

Dynamic Linear Model


Bayes-Lec10 贝叶斯线性与广义线性模型

Bayesian Linear and Generalized Linear Model


RL-Lec11 基于Q函数的深度强化学习

Deep Reinforcement Learning with Q-Functions


Bayes-Lec9 贝叶斯层次模型

Bayesian Hierarchical Model


StatCompWithR: 统计计算函数细节

Statistical Computing with R (details about functions)


Bayes-Lec8_2 贝叶斯模型选择(下)

Bayesian Model Selection (II)


Bayes-Lec8_1 贝叶斯模型选择(上)

Bayesian Model Selection (I)


RL-Lec10 神经网络与深度学习

Neural Network and Deep Learning


Bayes-Lec7 贝叶斯近似推断

Bayesian Approximate Inference


RL-Lec9 探索与利用

Exploration and Exploitation


LRM-Lec4_1 参数估计(最小二乘估计与极大似然估计)

Parameter Estimation (LSE & MLE)


LRM-Lec3_2 随机向量(下)

Random Vector (II)


LRM-Lec3_1 随机向量(上)

Random Vector (I)


LRM-Lec2 矩阵论基础知识

Basic Notions in Matrix Theory


LRM-Lec1 线性模型概论

Introduction to Linear Models


Bayes-Lec6.2 MCMC方法及其实施

Introducton and implementation of MCMC


RL-Lec8 整合学习与规划

Integrating Learning and Planning


StatCompWithR: 统计计算(已完结)

Statistical Computing with R (done)


Bayes-Lec6.1 贝叶斯计算方法

Computing Method in Bayes Inference


RL-Lec7 策略梯度

Policy Gradient


Bayes-Lec5.2 共轭分布族

Conjecture Distribution Family


Bayes-Lec5.1 先验分布的选取

Selection of Prior Distribution


RL-Lec6 值函数估计

Value Function Approximation


RL-Lec5 时序差分学习

Temporal-Difference Learning


Bayes-Lec4.3 假设检验,区间估计和Minimax准则

Hypothesis, Interval Estimation, and Minimax Criterion


Bayes-Lec4.2 一般损失函数下的贝叶斯解

Bayes Solution Under Different Loss Function


Bayes-Lec4.1 贝叶斯统计决策的基本概念

Basic of Bayes Decision Theory


RL-Lec4 蒙特卡洛方法

Monte Carlo Reinforcement Learning


Bayes-Lec3.2 贝叶斯统计推断(假设检验与预测推断)

Hypothesis Testing and Prediction


Bayes-Lec3.1 贝叶斯统计推断(点估计与区间估计)

Point and Interval Estimation


Bayes-Lec2.3 多元正态分布与线性回归模型中参数的后验分布

Posterior Distribution of MVN and LR


RL-Lec3 动态规划

Dynamic Programming


Bayes-Lec2.2 常见分布参数的后验分布计算(续)

Posterior Distribution of Parameters of Common Distribution


RL-Lec2.2 最优策略下贝尔曼方程及MDP的扩展

Bellman Equation for Optimal Policy and Extension of MDPs


Bayes-Lec2.1 贝叶斯统计推断基础

Basic Bayes Statistical Reference


Bayes-Lec1 经典统计推断回顾

Review of Classical Statistics


RL-Lec2.1 马尔可夫决策过程

Markov Decision Process


RL-Lec1 强化学习介绍

Introduction to Reinforcement Learning