Toggle navigation
统计小站 | Kausiujik
Home
About
Archive
Archive
「关于统计的资料整理汇总」
Show All
45
贝叶斯分析
19
强化学习
13
数理统计
5
线性统计模型
5
统计计算
2
纵向数据分析
1
2024
LongitudinalDA 论文列表
List of Papers
2023
MS-Lec2.2 统计学基础(统计决策理论、统计推断概述、渐近准则与推断)
Fundamentals of Statistics (Statistical Decision Theory, Statistical Inference, Asymptotic Criteria and Inference)
MS-Lec2.1 统计学基础(总体、样本、模型、统计量、充分性和完备性)
Fundamentals of Statistics (Populations, Samples, Models, Statistics, Sufficiency, and Completeness)
MS-Lec1.3 概率论(渐近理论)
Probability (Asymptotic Theory)
MS-Lec1.2 概率论(分布及其特征、条件期望)
Probability (Distributions and Their Characteristics, Conditional Expectations)
MS-Lec1.1 概率论(概率空间、随机元、积分和微分)
Probability (Probability Spaces, Random Elements, Integration and Differentiation)
2022
RL-Lec12 基于策略的深度强化学习
Policy-Based Deep Reinforcement Learning
Bayes-Lec11 动态线性模型
Dynamic Linear Model
Bayes-Lec10 贝叶斯线性与广义线性模型
Bayesian Linear and Generalized Linear Model
RL-Lec11 基于Q函数的深度强化学习
Deep Reinforcement Learning with Q-Functions
Bayes-Lec9 贝叶斯层次模型
Bayesian Hierarchical Model
StatCompWithR: 统计计算函数细节
Statistical Computing with R (details about functions)
Bayes-Lec8_2 贝叶斯模型选择(下)
Bayesian Model Selection (II)
Bayes-Lec8_1 贝叶斯模型选择(上)
Bayesian Model Selection (I)
RL-Lec10 神经网络与深度学习
Neural Network and Deep Learning
Bayes-Lec7 贝叶斯近似推断
Bayesian Approximate Inference
RL-Lec9 探索与利用
Exploration and Exploitation
LRM-Lec4_1 参数估计(最小二乘估计与极大似然估计)
Parameter Estimation (LSE & MLE)
LRM-Lec3_2 随机向量(下)
Random Vector (II)
LRM-Lec3_1 随机向量(上)
Random Vector (I)
LRM-Lec2 矩阵论基础知识
Basic Notions in Matrix Theory
LRM-Lec1 线性模型概论
Introduction to Linear Models
Bayes-Lec6.2 MCMC方法及其实施
Introducton and implementation of MCMC
RL-Lec8 整合学习与规划
Integrating Learning and Planning
StatCompWithR: 统计计算(已完结)
Statistical Computing with R (done)
Bayes-Lec6.1 贝叶斯计算方法
Computing Method in Bayes Inference
RL-Lec7 策略梯度
Policy Gradient
Bayes-Lec5.2 共轭分布族
Conjecture Distribution Family
Bayes-Lec5.1 先验分布的选取
Selection of Prior Distribution
RL-Lec6 值函数估计
Value Function Approximation
RL-Lec5 时序差分学习
Temporal-Difference Learning
Bayes-Lec4.3 假设检验,区间估计和Minimax准则
Hypothesis, Interval Estimation, and Minimax Criterion
Bayes-Lec4.2 一般损失函数下的贝叶斯解
Bayes Solution Under Different Loss Function
Bayes-Lec4.1 贝叶斯统计决策的基本概念
Basic of Bayes Decision Theory
RL-Lec4 蒙特卡洛方法
Monte Carlo Reinforcement Learning
Bayes-Lec3.2 贝叶斯统计推断(假设检验与预测推断)
Hypothesis Testing and Prediction
Bayes-Lec3.1 贝叶斯统计推断(点估计与区间估计)
Point and Interval Estimation
Bayes-Lec2.3 多元正态分布与线性回归模型中参数的后验分布
Posterior Distribution of MVN and LR
RL-Lec3 动态规划
Dynamic Programming
Bayes-Lec2.2 常见分布参数的后验分布计算(续)
Posterior Distribution of Parameters of Common Distribution
RL-Lec2.2 最优策略下贝尔曼方程及MDP的扩展
Bellman Equation for Optimal Policy and Extension of MDPs
Bayes-Lec2.1 贝叶斯统计推断基础
Basic Bayes Statistical Reference
Bayes-Lec1 经典统计推断回顾
Review of Classical Statistics
RL-Lec2.1 马尔可夫决策过程
Markov Decision Process
RL-Lec1 强化学习介绍
Introduction to Reinforcement Learning